Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation.
نویسندگان
چکیده
Inappropriately elevated insulin secretion is the hallmark of persistent hyperinsulinemic hypoglycemia of infancy (PHHI), also denoted congenital hyperinsulinism. Causal mutations have been uncovered in genes coding for the beta-cell's ATP-sensitive potassium channel and the metabolic enzymes glucokinase and glutamate dehydrogenase. In addition, one hyperinsulinemic infant was recently found to have a mutation in the gene encoding short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD), an enzyme participating in mitochondrial fatty acid oxidation. We have studied a consanguineous family with severe neonatal hypoglycemia due to increased insulin levels and where well-established genetic causes of hyperinsulinism had been eliminated. A genome-wide, microsatellite-based screen for homozygous chromosomal segments was performed. Those regions that were inherited in accordance with the presupposed model were searched for mutations in genes encoding metabolic enzymes. A novel, homozygous deletion mutation was found in the gene coding for the SCHAD enzyme. The mutation affected RNA splicing and was predicted to lead to a protein lacking 30 amino acids. The observations at the molecular level were confirmed by demonstrating greatly reduced SCHAD activity in the patients' fibroblasts and enhanced levels of 3-hydroxybutyryl-carnitine in their blood plasma. Urine metabolite analysis showed that SCHAD deficiency resulted in specific excretion of 3-hydroxyglutaric acid. By the genetic explanation of our family's cases of severe hypoglycemia, it is now clear that recessively inherited SCHAD deficiency can result in PHHI. This finding suggests that mitochondrial fatty acid oxidation influences insulin secretion by a hitherto unknown mechanism.
منابع مشابه
Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of β-oxidation in insulin secretion
Short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) catalyzes the penultimate reaction in the mitochondrial fatty acid oxidation spiral, the NAD+dependent conversion of L-3-hydroxyacyl-CoA to 3-ketoacyl-CoA. The cDNA and genomic sequences for human SCHAD have been elucidated (1, 2). Northern blot analysis of SCHAD mRNA revealed a single transcript; expression was highest in skeletal and cardi...
متن کاملThe Hypoglycemic Phenotype Is Islet Cell–Autonomous in Short-Chain Hydroxyacyl-CoA Dehydrogenase–Deficient Mice
Congenital hyperinsulinism of infancy (CHI) can be caused by inactivating mutations in the gene encoding short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD), a ubiquitously expressed enzyme involved in fatty acid oxidation. The hypersecretion of insulin may be explained by a loss of interaction between SCHAD and glutamate dehydrogenase in the pancreatic β-cells. However, there is also a general...
متن کاملHyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion.
A female infant of nonconsanguineous Indian parents presented at 4 months with a hypoglycemic convulsion. Further episodes of hypoketotic hypoglycemia were associated with inappropriately elevated plasma insulin concentrations. However, unlike other children with hyperinsulinism, this patient had a persistently elevated blood spot hydroxybutyrylcarnitine concentration when fed, as well as when ...
متن کاملShort-Chain 3-Hydroxyacyl-Coenzyme A Dehydrogenase Associates with a Protein Super-Complex Integrating Multiple Metabolic Pathways
Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of ...
متن کاملA Deep Intronic HADH Splicing Mutation (c.636+471G>T) in a Congenital Hyperinsulinemic Hypoglycemia Case: Long Term Clinical Course
Unlike other congenital fatty acid oxidation defects, short-chain L-3-hydroxyacyl-CoA (SCHAD, HADH) deficiency is characterised by hypoglycemia with hyperinsulinism in the neonatal or infancy periods. The long-term and detailed clinical progression of the disease is largely unknown with almost 40 patients reported and only a few patients described clinically. We present clinical and laboratory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2004